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Abstract. Visual communication, in the form of telephotography and
television, for example, can be regarded as efficient only if the amount
of information that it conveys about the scene to the observer ap-
proaches the maximum possible and the associated cost approaches
the minimum possible. Elsewhere we have addressed the problem of
assessing the end-to-end performance of visual communication systems
in terms of their efficiency in this sense by integrating the critical limiting
factors that constrain image gathering into classical communication the-
ory. We use this approach to assess the electro-optical design of image-
gathering devices as a function of the f number and apodization of the
objective lens and the aperture size and sampling geometry of the pho-
todetection mechanism. Results show that an image-gathering device
that is designed to optimize information capacity performs similarly to the
human eye. For both, the performance approaches the maximum pos-
sible, in terms of the efficiency with which the acquired information can
be transmitted as decorrelated data, and the fidelity, sharpness, and
clarity with which fine detail can be restored.

Subject terms: electro-optical design: information; entropy; dynamic-range
compression; image coding; image restoration.

Optical Engineering 34(3), 795-813 (March 1995).

1 Introduction

The problem of visual communication is that of producing

an image that conveys intormation to the human observer at

one point about a scene that is located at another point. Until

recently, in telephotography and television, fiw example, the

input terminal of the visual communication channel consisted

solely of the image-gathering device that transtk_rms the spa-

lially varying radiance field reflected or emitted by the scene

into the signal that is transmitted, and the output terminal

consisted solely of the image display device that transforms

the received signal into an image. However. advances in

technology are leading to rapid growth in the capabilities of

analog and digital VLSI processors, even as their cost, size,

weight, and power consumption decrease. Consequently, vis-

ual communication is now increasingly carried out by com-

bining image gathering and display with digital image pro-

cessing, hnage gathering is combined with encoding to

reduce data transmission, and image display is combined with

restoration to enhance image quality. So far, however, the

electro-optical design of image-gathering devices and the

digital image processing for encoding and restoration have

remained independent disciplines, following distinctly sep-
arate traditions.

The electro-optical design of image-gathering devices or-

dinarily revolves around two interdependent trade-offs. One

trade-off, in terms of geometrical optics, is widely under-

stood. It deals with instantaneous lield of view (IFOV) versus
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signal-to-noise ratio ISNR) as controlled largely by the ap-

erture size and focal length of the objective lens together with

the aperture size and responsivity of the photodetection mech-

anism._'2 Additional factors that may enter into this trade-off

are field of view. depth of field, and exposure lime. _ The

IFOV and associated sampling lattice that evolve from this

trade-off establish the angular resolution, or spatial scale, of

the visual communication, ranging froin telescopic to

microscopic.

The other trade-off, in terms of physical optics, which we

address in this paper, is less widely understood. It deals with

the relationship between the spatial-frequency response

(SFR) of the optical (objective lens and photosensor) aper-

tures and the sampling passband of the photodetection inech-

anism as a function of the SNR. The design that evolves from

this trade-off establishes upper bounds on the information

capacity of the visual communication channel at the spatial

scale fixed by the sampling lattice.

Traditionally, the relationship between the SFR and sam-

pling passband of the image-gathering device has been op-

timized to produce the best possible picture when the image

display device reconstructs the received signal into an image

without digital processing, a _' For this reconstruction it is

ordinarily preferred to let the SFR extend far beyond the

sampling passband in order to avoid substantial blurring

within the passband, at the cost of aliasing that the resultant

insufficient sampling causes. However, the model of image

gathering that has bccn used in the prevalent digital-image-

processing literature 3 _2 takes account only of blurring and

noise. The insufficient sampling has been ignored both in the

assessment of digital image coding (e.g., by rate distortion

theory) and in the formulation of digital image restore!lion

algorithms (c.g.. the Wiener filter). This failure to take full

OPTICAL ENGINEERING / March 1995 / Vol. 34 No. 3 / 795



HUCK et al.

account of the image-gathering process has seriously

impeded the performance of visual communication systems

in which image gathering and display are combined with

digital image processing.

To overcome this impediment, Fales and Huck _ have

developed a mathematical foundation for assessing the end-

to-end performance of visual communication systems by rig-

omusly integrating the critical limiting factors that constrain

image gathering into the classical communication theories of

Shannon H and Wiener.15 These theories deal, respectively,

with the efticient transmission of information through a noisy

communication channel and the mh_imun3-mcan-squared-

error restoration of the input signal to the channel from the

received signal. The inclusion of the image-gathering con-

straints into these theories allows the designer to assess visual

communication in tern> of three intuitively attractive criteria:

the information capacity of the image-gathering device, the

theoretical nfinimum data rate at which the acquired inlk_r-

marion can be transmitted, and the nlaxJmum fdelity with

which an image can be restored from the received data. It is

an agreeable consequence of this approach " i, that the

image-gathering device that is designed to maximize the in-

formation capacity also tends to maximize the information

efficiency with which decorrelated data can be transmitted

and the sharpness and clarity as well its the fidelity with which

images can be restored with the Wiener filter.

In addition to the spatial properties of the radiance field,

the designer must often deal with its wide dynamic range.

Radiance fields in natural terrestrial environments exhibit

dynamic variations tip to 1() ]1 : l, ranging from the darkest
visible extended surface to the brightest patches that one

commonly encounters.t_; The dynamic range of photosensors

is substantially lower. For photosensor arrays, such as charge-

coupled devices (CCDs), the dynamic range is _1() 4 : I,

ranging from the noise level to the highest signal level. The

preamplifier that reads the signal out of the photosensor array

to the analog-to-digital converter further limits the dynamic

range to _3 × 10 _ : I. The dynamic range of image display

media is still lower. For film transparencies it may approach

103 : 1, but for film prints it is only _ 10 : l, ranging from a
reflectance of _0.8% to 80%. Within this narrow dynamic

range it is possible to produce up to 64 perceptible gray levels,

but one usually encounters less than 32 in practice. Hence,

it is often desirable to compress the dynamic range of the

acquired signal as early as possible in a way that best pre-

serves the reflectance boundaries and topology of the scene

while suppressing the temporal and spatial variations in the

scene illumination. To this end, we combine image gathering

with dynamic-range compression, similarly to the retinal pro-

cessmg in human vision.

In Sec. 2, we present a mathematical model of the visual

cornmunication system together with the criteria that we use

to assess its performance quantitatively. This assessment is

mathematically limited to a linear (small signal) analysis:

however, as we show later (ira Sec. 4), the linear optimization

has a significant effect on the performance when nonlinear
trans(ormation is added. Next, in Sec. 3, we characterize the

electro-optical design of image-gathering devices. This in-

cludes the human eye and recent developments of retina-like

analog VLSI processors such as Mead's "'silicon retina." 21_

The comparison of the informationally optimized electro-

optical design with the early stages in human vision is oh-

viously of interest because these stages a,e constrained by
• - ")1

the same critical limiting factors as vist, al commumcat_on.-

Finally, in Sec. 4, we evaluate the performance of the visual

communication channel as a function of the electro-optical

design and the dynamic range compression, considering both

image reconstruction and restoration. The difference between

these two image representations is important: whereas re-

__n.vlrltclioll is concerned with prodt, cing a continuous rep-

resentation of the digital oUtlml of the image-gathering

device, restor_uimz is concerned with producing a represen-

tation of the input to this device.

2 Mathematical Model

2.1 Visual Communication Channel

Figure I depicts a model of the visual communication channel

that combines image gathering and display, respectively, with

digital encoding and restoration. Mathematical assessments

of this model by' commt, nication theory are constrained by

the assumptions that all processes are linear and isoplanatic,

and that the radiance field and photosensor noise amplitudes

are Gaussian wide-sense stationary, and statistically

independent.

hnage gathering transforms the continuot, s radiance field

L(._.y) into the digital signal

s(x,r)=lKL(._,y)*'r(x,v) Ill(x,y)+,r,,(-v.Y)+,z,;(.v,Y) . (la)

where K is the steady-state gain of the linear radiance-to-

signal conversion, -r(.r,y) is the spatial response of the image-

gathering device, and rlv(x,y) and n,;(x,y) are the additive,

discrete photosensor and quantization noise, respectively.

The symbol * denotes convolution, and the function

IIl(,,,'t=xr E E a(,-x,,,,,- Y,,/
lit = -/ ii = -x

denotes sampling in the (x,y) rectangular coordinate system

of the image-gathering process with sampling intervals (X. Y).

This slnnpling lattice fixes the spatial scale at which the com-

munication channel operates. The treatment of quantization

as an additive noise can be justitied by Roberts' method for

converting quantization noise to random noise of the same

rms value. <2j This conversion establishes a mathematical and

perceptual equivalence between random and quantization

noise. The Fourier transform of this process is

_(v,to) = IKL(_ t0)+(v 0.,)1, tilt ,o )+ ,
(lb)

where £(v,m) is the continuous radiance-field transform,

-r(v,co) is the SFR of the image-gathering device, nl,(v,to) and

t),;(v,o_) are the discrete noise transforms, and (v to) are the

spatial frequencies with units of cycles pet sample. The

function

III

-- lit it -z

is the Fourier transform of the sampling lattice, where 8(t,.to)
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Fig. 1 Model of the visual communication channel.

is the Dirac delta function and lit, (v,o_) represents the sam-

piing sidebands. The associated sampling passband

[ ' <']#= I,,I<5" [,,,I

has area I#1= l/xY.

The analog-to-digital conversion is done with K levels fi)r

"q-bit quantization, where "q = log 2 K. This conversion is sub-

ject to the assumptions that the quantization is uniform, the

error of any one sample is uncorrelated with that of any other

sample, and the signal is equally likely to occur anywhere in

the quantization interval ccr,I K to C(T,/ K. The two param-

eters that define this interval are the variance cr_ of the ac-

quired signal given by (disregarding the phomsensor noise)

and the constant c that adjusts the intervals of the quanti-

zation. Consequently, the acquired signal is quanlized over

the dynamic range of - co-, to co-,, and signal values outside

this range are assigned to either 0 or K 1. We let c= V'3,

for which the dynamic range encompasses 92(7_ of ttle signal.
This value of c relates information to data so thai the theo-

retically highest information efficiency (as given in Section

2.2) is normalized to unity. 1(''17 Finally, it is convenient to

assume that the photosensor noise has a white power spectral

density (PSD) with variance _r_,.

Restoration readjusts the magnitude of each sample of the

digital signal s(x,y), interpolates between the samples, and

transforms the digitally processed signal into the continuous

image R(x,y), which has the Fourier transform
R(v,o_) = K 1_(v,e0)q)(v,oJ). The Wiener filter x_'(v,o)), which

minimizes the mean squared restoration error (MSRE) be-

tween Hv,_o) and [¢(v,to), can be expressed as I_' is

¢'(u,_) =

(I)1(vxo) "_* (v,o_)

(2)

where q)t (v,m) _r/ -(l)l(v,oJ) is the normalized PSD of the

radiance field with variance ¢r_, K_t/(r_, is the nns signai-to-

noise ratio (SNR) at the phot{_,ensor output, and (K(rl/_r,)K

is the corresponding SNR for the quantization. As imple-

mented here, this filter suppresses the blurring and raster

effects of the image display process by interpolating between

the acquired smnples with a display lattice that is four times

denser than the sampling lattice. This interpolation is depicted

in Fig. 1 by the symbol Ill (x,y). A denser image display lattice

does not perceptibly improve the visual quality of the restored

image, whereas a coarser lattice does reduce the visual qual-

ity. Reference 22 presents a filter that minimizes these re-

ductions in visual quality even if, in addition to a coarser

lattice, the computational support is constrained to further

reduce the complexity of processing.

The PSD (l)z(v,oJ) of the radiance field L(x,y) within an

isoplanatism patch A is assumed to De- -

@l(v,_o) Jnix-_r7• = 13)
II + (2"n-ixp) 2 iv? '

where p2=v2+u,2 (Fig. 2). Figure 3(a) shows a target of

random polygons that has this PSD. The target is generated

by a Poisson process with mean distance tx (measured in

sampling intervals) between radiance-field transitions and by

an independent Gaussian intensity distribution with variance

cr_. at the transitions. 26 The mean distance Ix between the

edges of the polygons is treated as the mean spatial detail of

the radiance field. That is, when X = Y= tx, the scale of the

sampling lattice coincides with the mean spatial detail. Fig-

ure 3(b) shows a target of resolution wedges that we include

to facilitate assessments of the fidelity with which fine detail

near the sampling ]altice can be restored.

2.2 Performance Criteria

Information theory treats the restored image R(x,y) as a re-

ceived message that gives information about the radiance

field l.(x,y) and accounts fi_r degradations as loss of infor-

mation. In this sense, the inlkwmation _ can be expressed
asl6 18
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Fig. 2 Normalized PSD (i{(v,m) of the random radiance field with
mean spatial detail ix relative to the sampling lattice.

(a)

_=0.5 1.0 1.5

J
*,(,,.o,)l-,o,,<.tl-. II1,(,,.<o_+ (g,.,/<.,,_ + (K,rtAr,) -n -

Xdv dm. (4)

The infl_rmation R =that the acquired signal contains, given

here as the average per digital sample, is Shannon's rate of

transmission of inlk_rmation, or information rate. i_ reaches

its theoretical upper bound

1

:_:"= 7 Ikl Jog_,lI + (K<,,/,,,,I-'1 (5)

when

(bt(v,_o) tO ' elsewhere,

I, (u,oJ)e//,'r(u,m)= 0' elsewhere,

and the quantization noise is negligible. This upper bound is

Shannon's channel capacity, which is constrained only by

the bandwidth _/and SNR K{rr/%,. However, the image-

gathering process inevitably bars Jf from I'eaching _,_',,,, be-

cause N is constrained also by the PSDs q_L(v,m) of natural

radiance fields and by the realizable SFRs "r(u,to) of optical

apertures, both of which decrease smoothly with increasing

spatial frequency.
The information _' for visual communication reaches its

maximum value when the sampling passband B best matches

the radiance-tield PSD q_fl_,to). We designate this maximum

value as the infommtion capacity _{,. Ordinarily, it occurs

when the sampling interval is near the mean spatial detail IX.

Comparisons of the infl_rmation capacity ;h': with Shannon's

channel capacity t¢,,, reveal that the image-gathering process

constrains t{,. to about half of tf:,,,.l_"lv

(b)

Fig. 3 Targets: (a) random polygons with mean distance ix= 3 per
sample and (b) resolution wedges.

The theoretical minimum data rate f associated with the

information ;_ is given by the mutual information between

the acquired signal before quantization and its quantized rep-

resentation. _3 It can be expressed as _s

^

^t ^ "_ -J1<i>.,(,.,,,,,)1• c,-,,,-,,)l'.II1(,-,,_,_)+(K,_,/o-,,) -
+ (Kerr/o ,) -K- 2 J dv dco .

(6)

This expression for g represents the entropy of completely

decorrelated data. It sets the theoretical lower bound on the

data rate that can be attained with lossless encoding. To dis-

tinguish entropy from information, we measure entropy in

binary units (bits), as is common for data, and infl_rmation

in binary information units (bifs).

Note that the sampling sidebands (aliasing) and photo-

sensor noise, which reduce 7{ in Eq. (4), increase ',*: in Eq.

(6). Hence, _; approaches its lower limit !f only when these

distortions are masked by coarse quantization. About 80c#
to 90% decorrelation is obtained when either differential

pulse code modulation (DPCM) or critically sampled mul-
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tiresolulion decomposition is combined with Hul'fnlan en-

coding. Is The decomposition does not improve on the de-

correlation produced by the computationally nluch simpler
DPCM.

I! is intuitively attractive to characterize the information

efficiency of the image-gathering process by the ratio ){/'_

and to adjust this ratio so that its theoretical upper bound is

unity. This adjustment occurs naturally for the conditions of

the PSD 4_/(v+m) and the SFR "r(v,m) that lead from given

by Eq. (4) to its upper bound )t,,, given by, Eq.^(5). These

conditions are implictly included in Eq. (2) for xl-'(l_,to), Eq.

(4) for t(, and Eq. (6) for '_. An important result of earlier

assessments i_, is which we also show here, is that the electro-

optical design that maximizes the information capacity :/{,

for a given SNR K_rl/_rl, also maximizes the information

efficiency _t /=#. But there always remains a trade-off, for

each design, between R, and _./=_ in the selection of the

number of quantization levels.

The fdelity F is a measure of the similarity between the

radiance feld L(x,y) and the image R(x.3') as delined by 272s

fy., [LC,.:.)-R{.,-,,.IIe dx dv
F = I (7)

ffAlL(x,.r)l-" dx d,'

The maximum value of F fl)r the image R(x,3') restored by'

the Wiener filter _-P'(_,m) is I_''lv

i_ t[_(v,m)1t(u,m)@(v,m) dtJ, dm
Oa

7

if 2,,...... (8)

where ':_v,m)is the spectral inlbrmation density' given by the

integrand of Eq. (41. Another important resull of earlier as-

sessments, I<tv which we also show here, is suggested by the

dependence of '.?i on ',/*t(t_,to); namely, that the image-gath-

ering device that is designed to maximize the reformation

capacity :It ordinarily can be relied on to maximize the li-

delity of the Wiener restoration. The apparent lack of reso-

lution and sharpness of Wiene," restorations is not, as was

long believed, a shortcoming of the lidelity criterion. _"17

Instead, it is the failure of the traditional fornlulalion of the

Wiener filter, like that of other restoration filters published

in the prevalent digital image-processing literature, 7 le to

allow fully for image gathering and display. When the Wiener

filter fully includes ttlese processes, then it produces images

with improved resolution and sharpness as well as fidelity.

Spatial details as small as the sampling interval are usually

resolved. However, Ihese images are also more sensitive to

visual defects such as aliasing artifacts and photosensor noise.

These defects diminish and the visual quality of Wiener res-

torations improves in clarity with increasing infomlation,

even after the maximtun fidelity has essentially been reached,

until this improvement is gradually ended by' the unavoidable

compromise among resolution, sharpness, aliasing artifacts,

and ringing. The visual quality may often be enhanced at a

small loss in resolution and sharpness by combining the Wie-

ner tilter with a modest amount of smoothing.l¢' ix

3 Electro-optical Design

3.1 Design Parameters

Image-gathering devices are commonly specified by their

IFOV and SNR. (To avoid possible confusion, il should be

pointed out here that the SNR is given elsewhere more com-

monly fin the average rather than for the rms signal value.)

These specifications can be injected into the image-gathering

model given by fklS. (I) via the steady-state gain (in am-

peres) 1.2

f,i " fllK k,','l_ l.(,k)r(_.) d_T_- 2 l.(,k)r(_) d;k, (9)

where ,vl - wD2/4 is the area of the objective lens aperture,

[_ = (yl(),)e_-(y/f) 2 steradians (sr) is the solid angle of the

IFOV, and F= f/l) is the lens f number. Other design pa-

rameters are identified in Fig. 4 and Table 1. The SFR _{v,m)

of the image-gathering device is the product of the SFR

q:_(v,m) and _tjv,o_)of the objective lens and photosensor

apertmv, respectively; i.e.,

T(v,m)=T _(u,o)lTr l,(ll.o_l . ([0)

The objective lens is characterized in Sec. 3.2 by its dif-

fraction-limited performance. However, few real lenses

achieve this perf_rmancc over their whole field, e'*';° The pho-

tosensor array is characterized in Sec. 3.3 for the square and

hexagonal sampling lattices, and lateral inhibition with these

two arrays is characterized in Sec. 3.4. It is common, as we

do here, to characterize the objective lens by its coherent

cutoff frequency I/eXF and the optical geometry that the

Picture Objective Photosensor
element lens array

7

......

Fig. 4 Optical configuration of the image-gathering device with pholosensor array.
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Table1 Designparameters,

I'arumeler Symbol Unit

LellS aperture diameler D m

lares focal length /" m

[>hutosensor aperture spacing X m

Photo_n_)r aperture width _¢ _';_

Photosensor dista/lce frmn lens £{, rnWavehm,_t h pm

|qmt usen'_or responsivffy r(A) A/W

Spectral radiance L()_) Wm 2sr-llo'n-I

objective lens forms with the photosensor aperture by the

optical design index "y/2kF.

3.2 Objective Lens

The SFR. or normalized optical transfer function (OTF),

"r ,(v,(,J) of a diffraction-linfited lens with a circular aperture

-r, (u,(,)) --

ff_ ,P; V +ff/2,_')P_(_'-ff/2,_') cxp(i@V) dS', d_'

where

l- t-

P;(v ,m )P;(v ,co ) d_' d_'
J)

(11)

ft(9,_), 92,o_2<_ 1 ,

P;(u'_) = [0 elsewhere,

=(u 2+¢o2)':2hF ,

and t(O,_) is the transmittance. The dimensionless spatial-

frequency variables 9, to, and _ are normalized to the coherent

cutoff frequency I/2XF. The defocus parameter u is

2X 2aF 2 "

where _k ( = [(, (;,I- and (; is the image-plane distance from

the lens (Fig. 4).

H()pkins_l 33 has formulated the SFR of a defocused dif-

fraction-limited lens with a clear aperture, i.e., ¢(iL7) = 1, and

Mino and Okano _4 have extended this lk)rmulation to include

two circularly symmetric variable lens transmittance shad-

ings that reduce delocus bh, r. OTFs for differen! shadings

also can be obtained directly by nunlerical integration of Eq.

(11). 3_ Figure 5 shows the SFR _(v.to) for a clear and two
shaded apertures. The shadings are given by

t(0,gG)= 1 O_ (12)

with [3 1 and 2. The ratio k of light transmilled through the

shaded aperture to a clear aperture, i.e., the effective trans-

mittance in Eq. (9), is

' [2k=2 F{t(F) d F .
0

(13)

As can he seen, the shading redtices the effect of defocus on

the SFR of the objective lens. However. this improvement

can be gained only at a loss of transmittance.

The angular sensitivity of the eye's photoreceptors (i.e.,

the Stiles-Craw'Rwd effect3% produces a similar result to the

variable lens transmittance shading. Metcalf 3v has shown that

the angular sensitivity of the photoreceplors can be consid-

ered as equivalent to a variable pupil aperture transmittance,

and Carroll ss has shown that this variable transmittance pro-

duces a SFR that is similar to the one given by, Fig. 5(b) for

[3 = 2. However, the advantages of this angular sensitivity,

or its equivalent aperture shading, have apparently not been

widely recognized: namely, that it enhances the SFR within

the photoreceptor sampling passband and renders the SFR
less sensitive to defocus.

3.3 Photosensor Arrays

Figure 6 depicts two photosensor arrays characterized by

"rz,(u.to),l]|(u.to). For the conventional"r,(x,y) H_I(.v,y) and
i

square array 35

TI'(X');)={I)/_2' elsewhere,]vl<Y/2'[vl<y/2,
(14a)

"r;,(u, to) = sincyv sinc',/to, (14b)

Ill = _ Ii : *

8(.v Xm,y-Xn) , (15a)

,:¢,,
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Fig. 5 SFRs of diffraction-limited lens with clear and shaded apertures for a coherent cutoff frequency
1/2X F 1 and several values of the defocus u: (a) clear aperture, k 1, (b) shaded aperture, [3 2
and k=0.33, and(c) shaded aperture, l{ = 1 and k 0.17.
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and for the regular hexagonal array 35

,, , [-v%,:" I-"1<2" _ _ 2

"r_,_x, v) = tO - elsewhere,

(15b)

(16a)

,r.,(v,to) =_ [sinc y'v rr v to

• 1,{. )x slnc-y /--_ + m
2 \\/3

"rr , [ _ _ sinc/y,._+ cos-zy/---_ + to/ (_
\\/3 / -

f"a"_'U_
+ cos/_/

\v3!

x sinc_'y' (_-to)sinc_'y' (_ + to) } ,

(16b)

IIl't,,,i V3x'e E E
-- 3

m _ z It =

I/_1'.,.o,),,, . ,,:: -, 8 v \.._X,,O_ , . (17b)

The sampling passband

/_={(,,,,o), I,,1<± < l2x' Itol _}

r-qrq  
7-_t F--lrq 

(a) (b)

Fig. 6 Photosensor arrays: (a) square and (b) hexagonal.

of the square lattice has area IB] = I/X 2, and the sampling

passband

1 I_,f \'_ltol l 1/_'= 0,,o,: I_'1.... , +_< ,--7-_\.X 2 2 V'3X' j

of the hexagonal lattice has area I#'1- 2/v3x 'e. The areas

[B[ and [t/' [, and hence the sampling densities of the square

and hexagonal lattices, are equal to each other when the

dimensions X and X' are such that X = _\/.'3/2) t''e

X' - 0.93X'.

Past comparisons of the square and hexagonal lattice have

been based on the premise that the signal spectrum is cir-

cularly symmetric and bandlimited. 3'_a° Given this premise,

it has been shown that the hexagonal lattice optimizes the

density with which the circularly symmetric sidebands can

be arranged in the spatial-frequency domain without overlap,

permitting exact reconstruction of the signal with a minimum

number of samples. In particular, Peterson and Middleton _'_

have shown that the contiguous sampling sidebands cover

90.8% of the spatial-frequency domain for the hexagonal

lattice, compared with only 78.5% for the square lattice• Con-

sequently, as Mersereau 4° has shown, the hexagonal lattice

can have 13_7c fewer photosensors (and correspondingly

larger photosensor areas) than the square lattice tbr the exact

reconstruction of circularly symmetric, sufficiently sampled

signals.

3.4 Lateral Inhibition

Figure 7 depicts a hypothetical mechanism that adds lateral

inhibition to the two photosensor arrays• The diagram shows

only those interconnections that form a single neighborhood

subtraction. The subtraction is pertbrmed with either eight

neighboring pholosensors for the square array or six fl_r the

hexagonal array,. For digital VLSI implementation, many

more interconnections are required so that each photosensor,

in effect, serves once in the central position and either eight

or six times in the neighboring positions. However. for analog

a_ 0.18

0.07

___ f _s(x,y)7 _ (a)

1/6

Lens Elements Neighborhood
of sensor array signal processing

Fig, 7 Photosensor arrays with lateral inhibition: (a) square and (b)
hexagonal.
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VI.SI inlplementathms, this circuit can be inlplemented with

a relatively simple resistive network. :°

For the square a,ray, the spatial response becomes 4_

x,y) _ +a4 T, --,

+ .v ,_, '7, .'c

[ ,) f,,)
(18a)

where 4 (0<_4 _< 1 ) is the hiteral inhibition index and 'rv(x,y)

is eiven by, Eq. (14a). The corresponding SFR is

,ri,,(u, co) A(_)'rv{u,m)l I 4a4(I -- cos2TrXu -- cos2TrXm)

+4b4(I 2 cos-"rrXu I-2 cos2wXm)] ,

(18b)

where "_v(u, co) is given by Eq. 14bY. Only the fl)rm of

vv_(u,to) should be used to characterize the SFR of the pho-

tosensor an'ay with lateral inhibition. The factor A(4) must

be associated with the photosensor and aliased noise because 41

the normalization of _:z,,(u, to) is intimately tied to the gain

constant K. The SFR q:p,(u,co) most closely approaches cir-

cular symmetry when a - 0.18 and b - 0.07.

If electronic noise sources other than the photosensor are

disregarded, then the output noise level is

- _ (r/' .

Both the signal power and the aliased noise power are pro-

portional to IA It, ll 2. The,'efo,e, the gain IA(__)] in the SNR

expression Kc_z./_r j, cancels, and one may choose any nor-

malization factor A (4) as hmg as the noise %, is replaced by

the %,. Here we let A (_)= 1. Hence, the increase in noise
that lateral inhibition causes for this hypotethical circuit is

at most a factor of I. 13 when l; = 1.

Similarly, for the hexagonal array, the spatial response
becoines 4 I

'ri,/(.v.y)=A({) "rj,(_v,y) ; E
IJl,l{ I

Inl g" p:)

, \,'3

,rv .v--CgZX'(m+,), y--7(m-n) , y=X,

(1%)

where "r_,lx.y)is given by Eq. (16a). The corresponding SFR
is

._/,,I_,.,,,I=A_<I._j,_,,.,ot I I2 cosi2vx'o,t

_ _ )+2 cos'rrX'(k 3v+_0)+2 coswX'(k 3v-o_)] .

(19by

where 4f,(u,m) is given by, Eq. (18a). The noise %, is now

replaced by

,5,, = IA(C)I(1 + _-/6) -,r,, .

which for ,4( 4 )- 1 is lit most a factor of 17 when 4- 1.

3.5 Informatmn Capacity

Figures 8 and 9 charactcrizc the information capacity t_ as

a functiorl of the optical design index yl2Xb" for several

SNRs Kit //_rv. The noise variance cry,, includes both pho-

tosensor and quantizalion noise. The objective lens is clear

in Fig. 8 trod shaded in Fig. 9. Both figures provide for the

square and hexagonal photosensor array lattices, either with-

out lateral inhibition (4- 0) or with maximum lateral inhi-

bition (4= 1).

The curves show thai t( depends critically on the optical

design index ",//2 X F. The inflwmation capacity is irrevocably

constrained to be _i < 3 bifs, regardless of the SNR. however

high it may be, if the optical design index for a diffraction-

limited objective lens falls outside the range 0.3 <'y/2XF

<:0.6. Within this range, the infornmlion capacity' reaches its

maximum value for the SNR K_rJoix-256 when y/2_.F

_0.35 for the clear lens and whcn y/2 X F_0.4 for the shaded

lens. Then, i_5 bifs withot, t lateral inhibition and _¢ _4.5

bifs with maximurn lateral inhibition. R is a little lower than

these values for the clear aperture and square sampling lattice,

and it is a little higher for the shaded aperture and hexagonal

sampling lattice. However, 3t depends far more on the op-

tical-design index and the SNR than on the lens shading,

sampling geometry, or lateral inhibition.

To characterize the dependence of _, on the electro-op-

tical design in more detail, Figs. 10 arm 11 illustrate the

responses of the image-gathering device for the square and

hexagonal arrays, respectively. As can be seen, the SFRs of

the photodetection mechanism extend far beyond the sam-

piing passband R even for contiguous apertures. Thereflwe,

to optimize the information capacity R, the objective lens

must suppress the out-of-band portion of the SFR. The exact

anaount of suppression becomes increasingly critical as one

tries to improve _,. by increasing Ktrz/tr_..

Figure 12 shows that Gcmssian responses closely, approx-

imate the SFRs "r(u,co) of the image-gathering device. This

allows us to model the SFR of image gathering with lateral

inhibition by the difference-of-Gaussians (DOG) function

where, as Fig. 13 depicts, E.is the optical response index that

controls the relationship between i: ('o,m:_,g,.) and B (i.e., the

trade-off between aliasing and blun'ing), and ¢ is the lateral-

inhibition index that controls the dynamic-range compres-

sion. The DOG response for E 1 closely approximates the

Laplacian-of-Gaussian (geG) response, where 2 'e h'-Ih.v e

+ i_'-/hv z is the Laplacian operator. This openttor, in effect,
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Fig. 8 Information capacity It'c as a function of the optical-design
index y/2 _ F for several SNRs K(rL/Ir N. The results are given for a
clear objective lens and the (a) square and (b) hexagonal photosen-
sor arrays with contiguous apertures. The lateral inhibition is either
_=0or 1.

enhances the radiance-field transitions after those transitions

have been smoothed by the (approximately) Gaussian re-

sponse of the image-gathering device.

3.6 Human Vision

Earl3<' vision is constrained by the same critical limiting fac-

tors as visual communication. The resolving power (or sanl-

piing passband) of all eyes, in invertebrates as well as in

vertebrates, appears to be limited by the difficulty of confining

light within the outer seglnent of a photoreceptor. > Center-

to-center spacings of foveal cones less than 2 ixm have never

been found, regardless of the size of the eye. a-" Moreover,

the pupilfnumber remains remarkably constant in a variety

of species, ranging from humans to birds of prey of widely

different sizes, a-" The sensitivity of the eye appears to be

limited by the thermal stability of the photosensitive pigments

of the photoreceptors. Because "'(lark'" noise is extremely

low, equivalent to only a few quanta of light,l'_ the sensitivity

essentially is limited by photon noise rather than the statis-

tically independent noise assumed in this assessment.

The human eye as a whole can encompass the wide dy-

namic range of the natural radiance fields thai one commonly

encounters. If one allows for changes in pupil (or lens) di-

ameter and lk)r optical losses, then the dynamic range of the

radiance incident on the retina reduces to -_ 10 v : 1. Barlow I'J

estimates that the nunlber of distinguishable intensity levels

in this dynamic range is _200. Retinal processing seems to

reduce this number of levels by a factor of :_5 io the tipper

limit of _40 levels that each nerve liber can transmit fiom

the retina to the visual cortex within _ 1/20 s to a_oid pro-

hinging the reaction time.

The eye's pupil dialneter is D- 2.5 mm in bright light,

and the effective focal length isf 17 mm (i.e., F= 6.8). The

6
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3

2

1
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_=1
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(a)

_,=0
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¸
O 0.2 0.4 0.6 0.8 1.0 1.2

y'/2_.F

(b)

Fig. 9 Same as Fig. 8, but for a shaded objective lens with # = 2.
The symbol • marks the performance of the human eye.

photoreceptor spectral responsivity is centered around

h = 0.56 ixm, and the width of the contiguous foveal cones

arranged in a hexagonal lattice is y' 3 txm. Hence, the IFOV

y'/f=O. 18 mrad:-0.OI deg, and the optical design index

y'/2hF=0.4. Finally, the angular sensitivity of the eye's

photoreceptors prodtices _v'a_ a similar effect to the lens ap-

erture shading for [3 - 2.

The number of distinguishable levels, _, can be related to

the SNR K_rr/_r_ by _4

= I I +(K%/{rx)21 _'- {21)

According to this relationship, the i, 200 distinguishable

levels are equivalent to a SNR of K%/_r x- 256 (for ix - 1

and g,=0.3). _' Hence, there exists an intuitively appealing

correspondence between the design of the human eye and

thai of an image-gathering device that is inlormationally op-

timized, as characterized in Fig. 8(b) for 3"/2XF-0.4,

K_I/_S:_r- 256. It follows that the eye's inli)rmation capacity

is 'Tf" _4.5 bifs (or 23 information levels). This perfomunlce

is robust to changes in pupil diameter. As diffraction blur

decreases with increasing dialneter, aberrations increase. _u

This compensation has not, to our knowledge, been exploitcd

lor digital cameras, even though it could improve their per-

fornlancc and occasionally also reduce the cost of their optics

simply by relaxing constraints on aberrations.

If the DOG function given by Eq. (20) is used as a basis

for modeling the angular response of the htnnan eye, then its

response for the optical design index 3"/2 h.F- 0.4 is the one

shown in Fig. 14. This I)()G function is the best-known model

of receptive fields and has been used successfully to model

the spatial and spatial-frequency responses for individual

nenrons 454_' in both the retina and the lateral geniculate nu-

cleus (I,GN). Measurements of the highest-resolution pro-
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Fig. 10 Spatial responses and SFRs of the image-gathering device with the square photosensor array
and the clear objective lens. The optical design index h'/2X F= 0.42.

cessing in human vision have been limited to anatomical and

perceptual data, neither of which can provide direct infl)r-

mation about the angular response. The gap in physiological

data is of necessity lilled by other primate studies, especially

of the macaque monkey, whose vision is considered to be

similar to human vision. Moreover, these studies of neuron

responses have emphasized the LGN, i.e., the target of the

optic nerve tract from the retina rather than the retina itself.

However, it seems reasonable to assume that the highest-

resolution neurons in the retina, the midget ganglion cells,

correspond directly to their counterparts, the parvocellular

layers of the LGN, and that both of these are the neural

structures responsible for the highest-spatial-resolution pro-

ces.sing in human vision.

Anatomical measurements of neural structt, res in the retina

indicate that the IFOV per cell is 0.023 deg, 47 which cor-

responds closely to the center diameter of the DOG model

in Fig. 14(a). Physiological measuremenls of primate retinal

resptmses are consistent with lhis center dimension, but differ

about the shape and extent of the surroLnld response, as One

type of surround resembles the DOG response based on near-

est neighbors but has an additional positive annular response.

The other type has a very wide weak surround abont 30 times

larger than the center. Of course, the surround response does

not affect the finest detail that can be resolved, but rather

deals with the lower spatial frequencies. It is, therefore,

noteworthy that the second response, with the wide but weak

surround, when coupled with a log intensity response, be-

comes a central element in several lightness theories. 4'_

Physiological measurements of contrast sensitivity and

dynamic range at the highest resolution of processing have

been largely conlined to the LGN neurons. Most studies are

consistent in finding that the contrast sensitivity for the parvo

cells is only about 10 : I but covers a relatively large dynamic

range. 5° Perceplua] nleasnrements indicate a contrast sensi-

tivity that is even coarser at the highest spatial frequency.

only about two shades of gray, 51 but ;.it lower spatial fre-

quencies approaches 200 : 1. Recent measurements also sug-
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Fig. 11 Same as Fig. 10. but for the hexagonal photosensor array and the shaded objective lens with

_ 2. The optical design index _'/2 _.F= 0.34.
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gest a variety of nonlinear interactions in visual processing

in addition to the log intensity response, which provides dy-

namic-range compression, adaptive contrast, and contextual

sensitivity. 52.53

3.7 Analog and Digital VLSI

Focal-plane processing may be implemented in a nnmber of

different ways, if we take the term to mean processing within

a camera but not necessarily, within the image plane proper.

Pure image-plane processing is realized in Mead's "'silicon

retina," where photoscnsor territory is sacrificed tk)r pro-

cessing territory with an analog VLS! resistive network, z°

This disadvantage can be overcome by moving the analog

processing to a separate chip. 54 This move allows the pho-

tosensor apertures to remain contiguous, but it reduces the

effective dynamic range on accour, t of the amplitier that is

required to read the acquired signal off the photosensor array

chip. Very recently, analog VLSI capacitor networks have

been exploited 55 in connection with IR imaging systems.

Significant advances have been made in the rapidly devel-

oping technology of analog VLSI image processors since the

last review 5+_of its history. Digital VKS! processors, by com-

parison, sacrifice the power and wiring economies inherent

in analog VLSI by orders of magnitude, 5v but gain in llex-

ibility, stability, and accuracy, ss

Thus fat', analog VESI implementations have considered

only spatial summations and differences, and a litnited set of

nonlinear intensity transformations (mainly logarithmic).

Whether this technology will prove to be flexible enough to

encompass other vision computations is a key question for

future research. Perhaps the future of analog VLSI will be

best guaranteed if it proves to be capable of the computations

that provide a sort of universal front-end processing that sup-

ports a wide array of subsequent more specialized visual

computations. To the extent that analog VLSI can mimic

early natural vision, some contidence is justified that it is

providing a generic foundation upon which a variety of di-

verse vision systems can be based. Even if analog VLSI is

successful lk_r universal vision-primitive computation, digital

processing will almost certainly enter the system design for

subsequent processing.

4 Performance

4.1 Small-Signal Linear Analysis

Figure 15 characterizes the information capacity h_ and the
maximum realizable fidelity ',_ as functions of the SFR

"r(v,00;{,_) and the SNR K(rt./%, at the photosensor output

(i.e., before quantization). The SFR, in turn, is controlled by

the optical-response index { and the lateral-inhibition index

(Fig. 13). As the curves tot" /(',. reveal, the information

capacity depends critically on { (i.e., on the trade-off between

aliasing and blurring) as a function of the SNR, consistent

with its dependence on the optical-design index "¥/2_F as

shown in Figs. 8 and 9. This dependence becomes now in-

tuitively appealing in terms of the restoration of fine detail

near the sampling lattice. At one extreme, when the SNR is

low, one would prefer to avoid substantial blurring because

the noise constrains the restoration. At the other ext,eme,
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when the SNR is high, one would prefer to avoid substantial

aliasing because the noise is no hmger a constraint.

The curves for t(, also reveal that the loss of intk)rmation

with increasing lateral inhibition is small for image-gathering

devices with SFRs (e.g., _=().3) and SNRs (K(rr/(r p 256)

that provide a high information capacity, but that it is large

for devices with the conventional SFR (i.e., _ -0.8) regard-

less of the SNR. Finally, the curves for both tf and ? reveal

that the optical design that tnaximizes I_ also maximizes the

tidelily ). Again, the loss of fidelity, like that ol +infornmtion,

is small for a device with a high h* and comparatively large

for a device with a low _¢,. Therefore, it is lk)r the conventiotlal

design thal one can expect lateral inhibition to impair the

restoration of fine detail most severely.

Figure 16 characterizes the infi)rmation capacity # and

infornmti(m efficiency If,/_ its functions of the lltlnlber (.)1'

quantization levels. Lateral inhibition is not included. The

selection of quantization levels given in Table 2 for the two

informationally optimized designs favors information capac-

ity. A smaller number of quantization levels for these two

designs would increase the information efticiency, but only

tit the cost of information and lidelity. However, for com-

mercial digital imaging systems, as characieri/ed by' design

1, the g-bit quantization could be reduced to 5-bit quantizaiion

to increase the information efficiency without loss in the

information capacily. In practice, the preferred "q-bit quan-

tization can be matched to the standard g-bit (or 12-bit) format

of comrnercial codec (encoder/decoder) methods, such as

JPEG, simply by assigning the coarse (_luanfizations for'q = 7,

6, and 5 to every second, fourth, or eighth level, respectively,
of the g-bit standard.

Figure 17 characterizes the dynamic range compression

(r_cl(r_(), the information capacity ,_(, and the information

efficiency 'h"/,s as functions of the lateral-inhibition index

for the three designs specilied in Table 2. The dynamic

range compression is given by the ratio

(ri-c

o-_-o

fJ'" ,bi.(u,_o) " I,_. ['r(v,to;{,Ol- dv dm (22)

By suppressing the low SFR, late,al inhibition decreases the

within-passband signal components relative to the aliased

signal components (see Fig. 13). Consequently, the interfer-

ence from aliasing increases strongly its the optical response

index { increases beyond 0.4 while the lateral-inhibition index

i_ approaches 1. It is therefore not surprising that, as lateral

inhibition increases, tt and lt/( decrease signilicantly for

design I, modestly for design 2, and negligibly tk)r design 3.

For design 2, ¢ -= (1.7 provides a dynamic range compression

_4 and reduces the information capacity to R _3 bifs: and

for design 3, the lateral inhibition with _=0.8 provides a

dynamic range compression -_5 and reduces the information

capacity to ,/_,--,4 bifs. Both designs 2 and 3 represent rea-

sonable alternatives: the choice between them depends

mostly on the SNR lhal can be attained.

Figure 18 presents Wiener restorations for the three de-

signs specitied in Table 2. The lateral-inhibition index is

either _ = 0 or 0.8. Consistent with the curves for t{ and ;_i

in Fig. 15, design 2 significantly improves on ).he resolution

and clarity attained with the conventional design I. The im-

provement in visual quality for design 3 over that for design

2 is relatively small. This improvement requires significantly

higher SNR but not a higher data rate. Note, in particular,

that the Lateral inhibition does not perceptibly impair the

visual quality for the two optimized designs, whereas it ira-
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Fig. 16 Information capacity _#¢ and information efficiency _fc/<_: as

functions of the number of quantization levels q.

Table 2 Characteristics of conventional and informationally opti-

mized image gathering for iz= 1.

D_iln _ Eat�e8 p II, bits /'_e, bifs E, bits 1_c/£

1 Con'ventional 0.8 16 8(5)' 1.8 7.5(4.6) 0.24(0.39)

2 Optimized 0.4 64 7 3.3 5.6 0.59

3 Optimized 0.3 256 8 4.2 5.6 0.75

*5-bit quautization may often be suf_cient for the low information capacity "He of this

design.

pairs the already poorer "¢istlal quality for the co]pcentional

design even further. Moreover, the theoretical mininlunl dala

rate for the IWO optimized designs is a fach/r of 1.3 h)wer

than for the convenlional design. Thus. the inforulalionaily

optimized design of|'ers ;.l lower data rate in addition Io better

linage quality and nlore robust dynanlic-runge compression.

4.2 Large-Signal Nonlinear Analysis

Image gathering with nonliilear conversion can he included

hi Eqs. (1) by replacing the linear gain K with the nonlinear

gain K(c,). In practice, the nonlinearity is colnnlonly intro-

duced in the analog-to-digital converler, i.e., afler sampling

rather than before. However, the order of noillinear conver-

sion and sampling can be interchanged matheinatically.

Moreover, the nonlinear conversion affects mostly the wide

dynamic range of the low-spatial-frequency coinponeilts of

the radiance field without significantly distorting the high-

spatial-frequency detail that one wishes to enhance. There-

fore, in practice one can often interchange the order of non-

linear conversion and spatial convohltion without introducing

serious errors, vj

A comnlon nonlinear conversion is given bV the pov,er

relationship 5`_

Xli=(K - 1)i I1<< sIf,, (23)

which is illustrated in Fig. 19. This nonlinearity increases the

quantization density in the dark portions of ihe radiance lield

at the expense of reducing it in the bright portions. For o_ - 2,

this relationship becomes the "square-roof" coding el'ten

found in linage encoding and models of nonlinear responses

in hunlan vision. +'°

Figure 20 depicts three irradiance proliles that span the

width of the random target. The "variation in the irradiance

is such that the average radiance lield, as it would be measured

by a light ineter, remains constant. The irradiance of the

shadowed region is a factor of either 5, 25, or 125 lower than

that of the bright region. These ratios encompass lhe varia-

tions in the depth of terrestrial shadows that one comnlonly

encounters.

Figure 21 characterizes the radiance lield that is the prod-

uct ol' the reflectances of the randonl target and the three

irradiances. It also characterizes the corresponding histo-

grams of the radiance lield and acqnired signal, and the im-

ages restored froth this signal. Results are gixen for design

2 as specified in Table 2. The restorations inchide histograin

1.0
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02 0.6

°2° 0.4
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3

<
2

" "_ 1
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Fig. 17 Characteristics of image gathering with lateral inhibition for the three designs specified in Table

1 (a) dynamic range compression, (b) information capacity, and (c) information efficiency,
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(a) (b) (c)

Fig. 18 Wiener restorations for (a) design 1, (b) design 2, and (c) design 3 characterized in Table 1.
The amount of lateral inhibition is 4 = 0 for the upper two rows and ( : 0.8 for lhe lower two rows.

equalization and edge enhancement. The httter is obtained

by letting the SFR +_(v,oJ;{,t_) in the Wiener tilter given by

Eq. (2) be "r(v,m;_,_ = 0) regardless of the vah, e of _ that is

actually used. In general, it is desirable to increase both non-

linearity and lateral inhibition as the shadow deepens. It is

then possible to resolve much of the structure of the scene

in the displayed image, even when the radiance tield with

the deep 125 : I shadow is compressed into the narrow

10:1 dynamic range of the image display.

It may be noted that the SNR fl+r the average value of the

spatially varying it+radiance was kept the same as tier the

uniflwm irradiance, i.e., K<_r/¢rt, - 64. Consequently, the ac-

tual SNR in the shadowed region is a factor of 3 lower than

this value for the 5 : 1 shadow, 13 for the 25 : 1 shadow,
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Fig. 19 Nonlinear radiance-to-signalconversion for K= 256.

and 63 for the 125 : I shadow. For the deepest shadow,
therefore, the SNR is only about unity. Yet the visual quality
of the restored images is not perceptibly impaired by noise.
This apparent robustness to noise results from the dynamic-
range compression of the noise as well as of the signal var-
iations by the nonlinearity of the film, which compresses the
contrast of dark and bright levels near the limits of its dynamic
range. Howeve,', if the spatial details in the shadowed region
are displayed with improved contrast (at the cost of over-
exposing the bright region), then the need for a higher SNR
becomes immediately apparent.

5 Concluding Remarks

The electro-optical design of the image-gathering device sets
an upper bound on both the angular resolution and the in-
formation capacity of visual communication systems. The
information capacity, in turn, sets upper bounds on the ef-
ficiency with which information can be transmitted and the
visual quality with which images can be restored.

The electro-optical design trade-offs involve a large num-
ber of design variables and hence a wide range of design
options. Nevertheless, if these trade-offs are optimized along
guidelines developed from communication theory, then they
lead inexorably to a design that is very similar to that of the
human eye. The performance with this design approaches
the maximum possible in terms of (I) the information ca-
pacity (:9_i,.-_5 bifs), (2) the infl)rmation efficiency ('_/'_,' = 0.8
bifs/bit) of decorrelated data, and (3) the fidelity, sharpness.
and clarity of the restored image. If lateral inhibition, akin
to the retinal processing in the human eye, is included to
reduce the wide dynamic range of natural radiance fields,
then the information capacity for this design diminishes only
slightly to _, = 4.5 bifs.

It may often be well worth while to use some of the clever
mechanisms that the human eye employs to adapt to the wide
depth of tield and dynamic range that it commonly encoun-
ters:

1. As the pupil diameter increases to compensate for a
decrease in scene ilhnnination, aberrations increase to
counter the associated decrease in diffraction blur. Ou,

l(x)

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

Shadow

-- - _ _ _.,\_,, 125

i I J I t _
16 32 48 64

x, sample

Fig. 20 Irradiance profiles across the random target.

2.

.

4.

results show that this increase in aberrations helps to
maintain the informationally optimized relationship
between the SFR of the optical (pupil and photorecep-
tor) apertures and the sampling passband of the pho-
toreceptor lattice.

The angular sensitivity of the photoreceptors enhances
the SFR and its robustness to defocus. The same en-

hancement can be prodt,ced by shading the objective
lens with a variable transmittance.

The lateral inhibition in the retina acts like a second-
order differentiator to enhance the radiance-field tran-

sitions relative to the low-spatial-frequency compo-
nents. Our results show that this enhancement depends
critically on the relationship between the SFR and sam-
piing passband and that the preferred relationship is
the one that maximizes the information capacity.

The dynamic-range compression in the retina occurs
before the signal is converted to the pulses that are
transmitted to the visual cortex. A similar implemen-
tation in the charge domain of the photosensor array,
before a preamplifier reads the signal out to the analog-
to-digital converter, could increase the effective dy-
namic range by an order of magnitude or more with
little loss of information while decreasing the power

required for digital processing by several orders of
magnitude.
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